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We examine the relationship between the masslessness of a photon and the realization of
global symmetries in abelian gauge theories in 2 + 1 dimensions: scalar and spinor QED and
their immediate generalizations. We find that this masslessness (in the Coulomb phase) directly
follows from the spontaneous breakdown of a symmetry generated by the magnetic flux. In
spinor QED with two flavours the chiral symmetry is broken as well but a linear combination of
the flux and chiral symmetries remains unbroken. A similar symmetry breaking pattern U(1) ®
U(1) - UQ1) is realized also in Chern-Simons electrodynamics for a particular value of the
Chern-Simons coefficient at which the photon becomes massless (anyon superconductor). The
pertinent order parameter for the Higgs—Coulomb phase transition in scalar QED is ideniified
with the vev of the magnetic vortex creation operator V(x). We calculate, using weak coupling
perturbation theory, the vev and the correlator of V(x) in both phases. This turns out to be
equivalent to evaluation of the euclidean QED partition function in the presence of the external
current which produces a magnetic monopole (with the contribution of the Dirac string
subtracted). In the Higgs phase this vev vanishes in accord with the Wigner—-Weyl realization of
the flux symmetry. In the Coulomb phase of scalar QED we obtain a nonzero value of the order
parameter whereas in the spinor QED it vanishes. This indicates that in the scalar QED the
symmetry breaking is of the usual Nambu-Goldstone type while in the spinor QED it is of
Kosterlitz-Thouless type.

1. Introduction

Scalar massless particles have long been associated with the spontaneous break-
ing of underlying continuous symmetries of a quantum field theory. There are
numerous examples of Goldstone bosons in d > 2. Physical realization of this
phenomenon can be found in QCD where pseudoscalar mesons are approximately
Goldstone bosons associated with the spontaneous breaking of chiral symmetry. In
d = 2, although the vev of any order parameter vanishes [1], this phenomenon
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continues to manifest itself in the guise of massless Kosterlitz-Thouless bosons
[2.3]. For example, the massless mode in the Gross—Neveu model appears as a
result of the Kosterlitz—Thouless realization of the chiral U(1) symmetry [3].

Generally the Goldstone theorem can also lead to the appearance of nonscalar
massless particles. This, for example, is the case of Goldstinos which appear as a
result of SUSY breaking.

There is another important class of theories which contain massless particles:
gauge theories. Masslessness of gauge bosons is usually not thought to be related
to a symmetry among the physical states of the theory. It is sometimes attributed to
gauge invariance. In general, however, there is no connection between the two.
Gauge bosons may acquire mass due to the Higgs phenomenon or related effects,
such as topological mass generation in QED;. The mass of gauge particlcs is a
dvnamical question, yet massless gauge particles often appear. In these theories
one would like to understand the exact masslessness of gauge bosons as resulting
from spontaneous breaking of a continuocus symmetry*.

Closely related to this question is the phase structure of thesc theories. Theories
exhibiting a conventional Goldstone phenomenon usually have two phases, distin-
guished by different realizations of a continuous symmetry. In the unbroken phase
the relevant symmetry is realized in the Wigner—-Weyl (WW) mode, and the
spectrum has an energy gap. As one approaches the critical point, the energy gap
vanishes, indicating the appearance of large-scale fluctuations. At the critical
point, objects carrying the symmetry charge condense, and the symmetry breaks
spontaneously beyond this point.

Abelian gauge theories such as the Higgs model (scalar QED), both in 2 + 1 and
3 + 1 dimensions, have a very similar phase structure. In the Coulomb phase there
is a massless mode — the photon. In the Higgs phase, on the other hand, there are
no massless modes. Usually this phase transition is not associated with the
Nambu-Goldstone (NG) phenomenon. The common jargon is that in the Higgs
phase “the local gauge symmetry is spontaneously broken”. This should not be
taken literally since local symmetries are never broken (by the Elitzur theorem [5]).
Moreover, even the global electric charge U(1) symmetry is not broken in the
Higgs phase [6). In fact, the appropriate local order parameter for this phase
transition has not been found [7].

One can take a radically different point of view on this question**. If the photon
were a massless mode associated with the spontaneous breakdown of some global
symmetry, then the Higgs—Coulomb phase transition is to be understood as
another example of a symmetry breaking phenomenon.

* There were attempts to understand photons as “Goldstone bosons” {4). In this case, however, the
proposed global transformation was a part of the local gauge group. These symmetries are not
symmetries between the physical states, and so are not of the type considered here.

** A short account of some ideas presented in this paper appeared in ref. [8].
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In this paper we pursue this line of reasoning in the framework of abelian gauge
theories in 2 + 1 dimensions. In 2 + 1 dimensions the analysis is greatly simplified
compared to realistic (3 + 1)-dimensional theories since the photon in the Coulomb
phase is in fact a scalar particle. The main idea, however, can be generalized to
3 + 1 dimensions.

We identify the symmetries responsible for masslessness of the photon in both
scalar and spinor QED;. In scalar QED it is the flux symmetry defined by the
conserved current

Fu=%€uVAFVA' (1'1)

The corresponding charge is the magnetic flux @ = [B(x)d%x. In the Coulomb
phase this symmetry is spontaneously broken, causing the masslessness of the
photon. In the Higgs phase it is realized in the WW mode, and the theory contains
excitations carrying nonzero flux (magnetic vortices) [9]. We construct the perti-
nent order paramctcr — the vortex creaiion operator — and calcuiate its vacuum
expectation value and correlator in weak coupling perturbation theory.

We also consider spinor QED with two flavours,

Z=¢(id—p —mry—ed)p — 3F?, (1.2)

where ¢°% a=1,2 is a doublet of two complex (Dirac) fermions, p and m are
parity-violating and parity-conserving fermion masses, respectively, and 7;=
diag(1, — 1). The theory is symmetric under flux symmetry generated by @ and
chiral transformations generated by Q° = [ d’x ¢'7;¢. For |m| > |u|, both the flux
& and the chiral charge Q7 are spontaneously broken and connect the vacuum to
the one-photon state. The following combination, however, remains unbroken:

1, =J5— — sign(m)F (13)
= M—E—ﬂ:sngn(m) - .

The symmetry breaking pattern therefore is Ug,(1) ® Ux(l) — U,(1). For |m| < |p|
both symmetries are unbroken. Precisely for these values of the parameters the
Chern—Simons (CS) term is generated dynamically, rendering the photon massive
(see fig. 1 for phase diagram).

We find that even in the broken phase the expectation value of the order
parameter vanishes. This indicates that the symmetry is realized not in familiar NG
mode but rather in the KT mode common in (1 + 1)-dimensional models [2, 3] (we
review definitions and some basic features of various modes of symmetry realiza-
tions in appendix A). Along similar lines we consider the CS electrodynamics [10].
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Fig. 1. Phase diagram of the spinor QED;. The lines separate the broken phase from the unbroken
phase.

This paper is organized as follows. In sect. 2 we consider symmetry breaking
patterns and massless modes in several (2 + 1)-dimensional abelian gauge theories.
In subsect. 2.1 we define the flux symmetry, first in the case of a free photon and
then in scalar QED. In subsect. 2.2 we remark that the ‘“chiral” lagrangian
corresponding to the symmetry breaking pattern requires softness of interactions
between photons. In subsect. 2.3 the phase structure and the symmetry breaking
pattern of the spinor QED and in subsect. 2.4 of the CS electrodynamics are
analyzed.

Sect. 3 is devoted to a perturbative evaluation of the order parameters. In
subsect. 3.1 the order parameter is calculated in the simple free photon theory. In
subsect. 3.2 we define the order field V(x) (the vortex creation operator) in the
interacting case. We calculate in subsect. 3.3 the vev and the correlator of V(x) in
the Coulomb phase of scalar QED and verify that V(x) is a local scalar field. In
subsect. 3.4 an analogous calculation is performed in the Higgs phase. The slope of
the exponential of the correlator (V(x)IV*(y)) ~ exp(—m|x — y|) determines the
mass of the magnetic vortex. To leading order in the electromagnetic coupling it
coincides with the energy of the classical solution [9, 11]. In subsect. 3.5 we define
the order parameter in spinor QED [which slightly differs from V{(x)).

Sect. 4 contains discussion of our results and generalization of this approach to
nonabelian gauge theories and QED,.

In appendix A we systematically classifv and review various modes of realization
of continuous symmetries, emphasizing the delicate distinction between the
Kosterlitz-Thouless (KT) and NG modes.
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2. Symmetry breaking and phase structure in QED,

2.1. SCALAR QED AND THE FLUX SYMMETRY

We first consider scalar QED, defined by the lagrangian
Z=1D,¢* +m?|p|* — [F2 + V($*4), (2.1)

where D, =49, —ieA, and V(¢$*¢) is a polynomial up to third order. This theory is
renormalizable in 2 + 1 dimensions. It has two phases — a Higgs phase, in which
the photon is massive, and a Coulomb phase, in which it is massless. Sometimes
the phase transition is associated with “breakdown of a local gauge symmetry”.
However, it is clear that one cannot make a physical distinction between phases on
the basis of realization of a gauge symmetry. All gauge group generators annihilate
physical states due to the Coulomb constraint and therefore the states are
invariant under the action of the gauge group in every phase.
The global U(1) electric charge symmetry generated by Q [6],

0 =fd2(x) Jo(x) = ‘i’fdzxaiEi(x)v
J,=i¢*D,é —hec., (2.2)

is a symmetry between physical states. However, this symmetry is not broken in any
one of the phases. In fact, in both phases all the finite-energy states are neutral
under the action of this symmetry. This is evident in the Higgs phase. Since the
electric charge is given by an integral of the electric field at spatial infinity and the
electric field decays exponentially (the photon is massive), any finite energy
configuration has zero charge. In the Coulomb phase the U,(1) symmetry is neutral
for a different reason. The exchange of massless photon induces a logarithmic
confinement of electric charges and therefore the energy of any charged state is
logarithmically divergent. Consequently this symmetry does not distinguish be-
tween the two phases.

We shall show now that the symmetry broken at the Coulomb-Higgs phase
transition is the flux symmetry. This symmetry is generated by the magnetic flux
through the plane @ = | d2x B(x). The corresponding identically conserved current
is [12]

F(x) =€, 94" (23)

As usual for currents of this type the symmetry charge generates transformation on
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fields only at space infinity. In hamiltonian gauge one has
[4,(x),®] =0, [E(x),?] =i[ d’ye; 38D (x —y). (2.4)

In the Higgs phase the symmetry is realized in the Wigner—Weyl mode while in the
Coulomb phase it is broken. The breakdown of this symmetry in the Coulomb
phase leads to the appearance of a corresponding massless mode — the photon.

We begin the discussion of the flux symmetry with the simple case of free
photon. In 2 + 1 dimensions the photon has only one transversal polarization and
is equivalent to a massless scalar particle*. Canonically (in hamiltonian gauge) the
theory is described by the hamiltonian

H= gJ[ d2x( E?+ B?) (2.5)
with the constraint
0,E;=0. (2.6)
The linear constraint is easily solved in terms of a single scalar field x(x),
Ei=¢€;9x. (2.7)

The magnetic field B(x) is just the momentum canonically conjugate to y(x),
B=—m. (2.8)

In these variables the hamiltonian becomes
H=g[d2x[w2+(a,.x)2]. (2.9)

The flux symmetry in these notations is a familiar shift transformation y(x)—
x(x) + const. This symmetry (in d =2+ 1) is spontaneously broken [13] with y
itself (which interpolates the photon) as a Goldstone boson.

This statement remains true in the Coulomb phase of the interacting theory as
well. The Coulomb constraint now is d,E;=j,. It is no longer solved by the

expression (2.7), but the matrix element of FM between the vacuum and one-pho-
ton state is easily calculated and still does not vanish. The correlator of the flux

*There is no helicity which distinguishes the massless photon from a massless scalar in 3+ 1
dimensions.
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current and the photon field is

A

p
“p?[1-1(p*)]°

[ d*x e (TF(x) 4,(0)) = (2.10)

where I1( p?) is the vacuum polarization contribution to the symmetric part of the
inverse photon propagator. In the Coulomb phase I1( p?) is regular as p> — 0 and
the matrix element of the current 15#( x) between the vacuum and the one-photon
state is given by*

i

OIF(x=0)I1,p) = - €, P"€" lim

P P T 2.11
2my/2p, pi—o 1 —1I(p?) (1D

where €* is the photon polarization vector. This quantity is gauge invariant, and
using hamiltonian gauge,

i Pi

€,=0, €=c il (2.12)
we obtain
(0|F.(0)I1, p) : li : (2.13)
,p)=——F—=p, lim ———, .
® 2my2p, “piso 1 “H(Pz)

where p, is momentum of the one-photon state. This is the familiar form of the
matrix element of spontaneovusly broken current between the vacuum and the state
of one Goldstone boson [13]. Eq. (2.13) implies that in the Coulomb phase the
vacuum is degenerate under the action of the flux symmetry and the photon is the
corresponding massless mode.

In the Higgs phase, eq. (2.13) is not valid any more. The photon now is massive
and has two polarizations. The vacuum polarization II( p?) has a pole at zero
momentum and the matrix element (2.11) vanishes. The magnetic flux annihilates
the vacuum state and the symmetry is not broken. The Higgs particle and the
massive photon are flux neutral. The spectrum also contains finite mass excitations
carrying nonzero flux: magnetic vortices. This gives a simple and natural interpre-
tation of the superconducting vacuum — it is a state, annihilated by magnetic flux.
Since there is a finite gap in the spectrum of flux carrying excitations (vortices),
a sufficiently small external magnetic field cannot penetrate the medium (the
Meissner effect).

As one approaches the phase transition point the mass of the vortices vanishes
and they condense. The Higgs—Coulomb phase transition can therefore be thought

* We use the canonical “nonrelativistic” normalization of states { plk) =8%(p — k).
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of as a condensation of vortices. We shall discuss this as well as the relevant order
parameter in subsect. 2.2.

2.2. EFFECTIVE “CHIRAL” LAGRANGIANS

It is well known [14] that Goldstone bosons, unlike other scalars, must interact
softly among themselves and sometimes with other particles. For any symmetry
breaking pattern G — H one generally can write down an effective “chiral”
lagrangian with fields interpolating Goldstone bosons living on the manifold G/H.

In the case of flux symmetry in 2 + 1 dimensions discussed above, the breaking
pattern is very simple: U(1) — 1. In general, for abelian symmetry breaking the
n-particle to m-particle S-matrix element is proportional to (at least) (m + n)
powers of momenta. This is indeed the case for effective interactions of photons
due to virtual pair creation processes.

In principle, the low-energy (“chiral”) effective lagrangian is derived by integrat-
ing out all of the massive degrees of freedom [15,16]. The effective “chiral”
lagrangian corresponding to the flux symmetry breaking coincides with the (2 + 1)-
dimensional analog of the Schwinger effective lagrangian

£=—1F?~iTrin[(3, —ied,)’ + m?|

=a(e?,m)F?*+ B(e?,m)FI*F + y(e?, m)(Fz)2 + higher-derivative terms.
(2.14)

It depends on the gauge-invariant field strength F,, and its derivatives only, and
therefore the effective photon—photon interaction is soft. The interaction of
Goldstone bosons with other particles need not be soft [16].

Similar conclusions are valid in spinor QED to which we now turn.

2.3. SPINOR QED

Let us consider spinor QED with two fermionic species,
;/:.:J(id—p,—m73—eA)lﬁ-—%F2, (2-15)

where ¢“, a=1,2 is a doublet of two component complex (Dirac) fermions,
7, = diag(l, — 1), and m and u are independent mass parameters*. In addition to
the global electric charge U,(1) and the flux U,(1) symmetries there is also a chiral
U, (1) symmetry. The corresponding currents are the electromagnetic current

*The m- and p-terms have different properties under the parity transformation defined as

d/(.x . ¥) = v 7 (—x,y), where 7, is a Pauli matrix acting on flavour indices. The m-term preserves
this symmetry, while the wp-term violates it.
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(a) (b)

Fig. 2. Diagrams generating (a) matrix element of .I,f between the vacuum and one-photon state: (b)
topological mass for the photon.

J, = Ey”([;, F;L and the chiral current J: = Ey#fz,:[/. To avoid confusion note that
our chiral transformation is not the same as what is sometimes called a “chiral”
rotation s — €924 — this we refer to as an “axial” rotation*.

This theory was extensively studied for a variety of reasons. Deser et al. [10]
found that in the m = 0 case a Chern-Simons (CS) term is dynamically generated
at the one-loop level and the photon acquires a CS mass (usually referred to as a
topological mass). In the u =0 case the photon remains massless and induces a
logarithmic confinement of electric charge. The dynamical breaking of the axial
symmetry in the massless case was studied in ref. [17].

The theory defined by eq. (2.15) like scalar QED exhibits the phenomenon of
flux symmetry breaking but has some new and interesting features.

The theory has two phases. When |u| > |m| (the Chern-Simons phase) the
photon is massive and all three symmetries are unbroken. When || < |m] (the
Coulomb phase) the photon is massless. The flux and chiral symmetries are both
broken but the combination

e -
1,=J— 5 sign(m)F, (2.16)
(with charge denoted by /) remains unbroken.

Let us now consider the lagrangian (2.15) in two extreme cases: (i) u = 0, (ii)
m=0.

(i) u =0. The CS term is not generated to all orders in perturbation theory [19].
Therefore the spectrum of the theory contains a massless photon. As in scalar
QED, F;‘ connects the vacuum to a one-photon state. The chiral charge Q° =
[ d?xJ3(x) annihilates the vacuum in lowest order. However in the next-to-leading
order one encounters the diagram of fig. 2a. It gives the following contribution to
the correlation function:

2,172

) iem 1 -p
fd3x e™P{0ITI(x) A,(0)I0) = — —{;G“VAPA(__;Z)T/E arctg( P ) . (2.17)

* This symmetry is sometimes called *“chiral”, since in terms of 4 X 4 Dirac matrices it is given by
¥ > e'%s . We use two-dimensional Dirac matrices which are natural in 2+ 1 dimensions. The
transformation which we call chiral in terms of 4 X 4 Dirac matrices takes form ¢ — e’z ¢ It is
the axial, rather than the chiral symmetry, that has recently been extensively studied analytically in
ref. [17] and numerically in ref. [18].
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This leads to a nonvanishing matrix element of the chiral current between the
vacuum and the one-photon state,

p,
O30)I1, p) = —ie sign(m)4—,“—— (2.18)
=2

VZP() .

In fact the diagram fig. 2a is the only contribution to eq. (2.17) to all orders in
perturbation theory. This can be proved by making use of the arguments of ref.
[19]). Therefore to all orders the only modification of the right-hand side of eq.
(2.17) is to multiply it by 1/(1 — I1( p?)). Eq. (2.18) shows that the vacuum is not
invariant under chiral rotations.

The combination I, in eq. (2.16). however remains unbroken. Therefore the
symmetry breaking pattern is Ug(1) ® U, (1) = U,(1).

(ii) m = 0. The correlation function (2.17) in this case vanishes to all orders. The
vacuum is invariant under chiral rotations and the symmetry is realized in the WW
mode. This is correlated with the generation of a topological mass for the photon.
Although on the classical level the photon is massless, quantum corrections induce
a topological mass [10]. To all orders in perturbation theory this mass is given by
the single one-loop diagram of fig. 2b [19]*.

The crossover between the two extreme cases is straightforward. The matrix
element of the chiral current and the photon topological mass for arbitrary m and
u are given by**

Ol3(0)I1, p> = — [sign(m + p) + sign(m — u)] p,, (2.19)

ie
4m/2p,

“«

Moy = 7~ [sign(m + p) — sign(m —u)] . (2.20)

* Note that the photon mass generation can be viewed as a kind of generalized Higgs mechanism
[20]. Indeed, the diagram by fig. 2b also contributes to the antisymmetric part of the correlator of
the electromagnetic current and the photon field,

5y 172
it ) 1 -p-
G = fd-‘xe POITT(x)A(0)0) = -teueu,,ApAm arctg( P ) .

If the photon were massless, then as p — 0 one would get an expression analogous to that of eq.
(2.18). Similarly in this case the photon would have had to be interpreted as a NG (or KT) (see
appendix A for definition) boson corresponding to the breaking of electric charge symmetry.
However, because the CS term is generated, the electric charge is not broken. This can be viewed
as a “self-Higgs” mechanism, when the photon plays the roles of both the “swallowed” NG (KT)
boson and the “swallowing” gauge field [8]. The number of degrees of freedom in this case is
evidently not changed.

** As a regulator, we use a pair of Pauli—Villars fermionic fields with masses of opposite sign. This
regularization preserves parity, which is present in the theory for u = 0.
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Eq. (2.19) follows in full analogy to eq. (2.20) [10]. The two fermion species running
in the loop of fig. 2 contribute to the matrix element independently.

We observe that the lines |m| = |u| are critical (fig. 1). We conclude that when
|| > Im| the photon is massive and both symmetries (flux and chiral) are unbro-
ken. In the rest of parameter space the charge / remains unbroken while 0’ and
& are broken. Similar analysis holds in QED with any even number of flavours.

2.4. CHERN-SIMONS QED

The present considerations are easily extended to a theory of N fermions with a
parity breaking mass and a Chern—Simons term,

A . Y
L= _%FZ + l[l'(la—l.t _e/d)‘b' + gevaAquA’ (2'21)

where i = 1,..., N. This theory possesses two conserved currents: the flux current
15“ and the particle number current J, = a'y#cp*.

Quantum corrections generate an additional contribution to the photon mass**.
When y =2Ne?, the gauge ficld becomes massless. The matrix element of the
current J, between the vacuum and a one-photon state has the form of eq. (2.18).
Consequently for this value of the parameter y both charges @ and Q = f d%xJ(x)
are broken. It is interesting that the combination of @ and Q that remains
unbroken coincides with the charge I = fd’xd,E,. This follows directly from the
equation of motion

8,F,, = ely,b— 4—71;5#,,,,F,,,, . (2.22)
Therefore the symmetry breaking pattern is U, (1) ® U (1) = U,(1).

The charge I is logarithmically confined due to the exchange of massless
photons. Physical excitations are therefore not interpolated by the field ¢, but
rather by a field which commutes with I. This field, in addition to the charge O,
carries magnetic flux @ =vy/4mwe. As a result, the excitations have fractional
statistics under exchange, and spin 3(1 — 1/N) [21].

This model can be used to describe a parity-violating two—dimensional super-
conductor. The correlator of the current J, acquires a pole at zero momentum.
When J, is minimally coupled to the real three-dimensional electromagnetic field
[22], the pole in the propagator of the real photon is shifted from zero to some
finite value, indicating superconductivity. The mechanism of superconductivity, i.€.
cancellation of the renormalized CS coefficient is the same for the nonrelativistic

*For N>1 there is, of course, the additional SU(N) flavour symmetry. As this symmetry is
unbroken in the whole parameter space, it will be of no interest to us.
** We adopt Pauli-Villars regularization with sign Mpy,, = —sign u.
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anyon gas and CS QED. In the nonrelativistic anyon gas with statistics (1 — 1/N),
the particles fill N Landau bands, each contributing —e”/47 to the induced CS
coefficient, cancelling exactly the bare one. In the model (2.21), the role of the N
Landau bands is played by the N fermion species, with the same effect on the
renormalized CS coefficient. The number of fermion species N is equal to the
number of filled Landau bands in the anyon gas [22]. The superconductivity of
the anyon gas occurs at the point in parameter space at which the particle number
symmetry is broken.

3. Order parameter

In this section, we define and calculate, in perturbation theory, the order
parameter and the correlator of the order field in the theories we considered in
sect. 2.

3.1. FREE PHOTON

Let us start with the simplest case of the free photon. As was discussed in sect. 2
the flux symmetry here is spontaneously broken. We shall now see this directly by
calculating the order parameter. The analogous calculation in the interacting
theories will coincide with this one in the leading order in the weak coupling
expansion.

The relevant order parameter in this case is

r={V(x)), (3.1)
where the order field V(x) is defined by the requirement (see appendix A)
[V(x),B(y)] = —gV(x)8*(x —y). (3.2)
Any operator of the form
V(x) =Cexp(igx(x)),  x(x)=[d¥ya(x-y)E(y),  (3.3)
with C a constant, and the function a,(x) satisfying the condition
€;0.a,(x) =82(x), (3.4)

solves eq. (3.2). Functions a/x) differing by the gradient of a scalar function
define operators ¥(x), which coincide on the Coulomb constraint (2.6). In what
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follows we take a,(x) to be

1 X;

a(x)= ;e,-j;;- . (35)

The constant C is necessary to absorb divergences.

The expectation value of the exponential of a linear operator is generally given
by

(exp(igx)) =exp{ h %(x"%} , (3.6)

n=1

where {x"). is the connected n-point Green function. For free theory the only
contribution comes from the connected two-point function,

d*p

(27)?

(x(X)x(x)) = [ a(p)a(-p)[PiGiAp)—is;].  (3.7)

Here G;;(p) is the Feynman photon propagator in hamiltonian gauge*;

i DiD;
G, (p) = ;(5,-,- " —) (3.8)

0

The last term in eq. (3.7) originates from the time ordering in the definition of
G**. Using the explicit form of «; [see eq.(3.5)] one obtains

~dp 1 A
Craxa) =if =55 = (3.9)
where A is an ultraviolet momentum cutoff. As we shall see, this is the only
ultraviolet divergence which will appear, even in the interacting theory. Absorbing
this linear ultraviolet divergence in the constant C of eq. (3.3) renders all the
Green functions of the vortex operator V{(x) finite.

With this definition, the renormalized order parameter is then finite, pointing to
NG realization of the flux symmetry. In what follows, we choose C such that

*In the interacting case the hamiltonian gauge is known to have ambiguities at the two-loop level
[23]). However this does not cause any difficulty in our work since we do not encounter loop
integrals with internal photon lines. The advantage of the hamiltonian gauge in this setting is that it
leads to the simplest canonical formalism.

** See e.g. ref. [24].
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{V(x)) = 1. The correlator of thc order field is given by

(V(x)V*(y)) = CXexplig[ x(x) —x(y)]}) = exp[ —g>G(x —y)], (3.10)

where G is the propagator of the massless scalar,

G(x—y)= (3.11)

4rrlx —y|

When |x — y| — = the correlator approaches a constant as usual in NG realization.
This calculation is conveniently represented in the euclidean path integral
formalism. The vev of V(x) can be naively rewritten as

(V) = Cfzaew| -2 -g[ @rir-nam]. ()

where

Jo=0, Ji(x) =8'(xy)a,(x). (3.13)

This is obtained from eq. (3.3) using integration by parts. The integration by parts
is naive since it disregards the equal-time singularity. In the canonical formalism
this corresponds to dropping the §; j-term in eq. (3.7). The correct result is

(V(x))=C[74 exp[— i -gfja,+12 [ juGﬁf,‘“'"j.,] . (3.14)

with

1
Greturn(p) —_ 0, G’_r;:lurn(p) - ?5

0
0

(3.15)

ij*
The significance of the G™"™ term will become apparent in subsect. 3.3.

3.2. VORTEX OPERATOR IN INTERACTING THEORY

As we have seen in sect. 2 in the interacting theory 15# remains a conserved
current. The Coulomb constraint is, however, altered,

dE, =el,. (3.16)

As a consequence, the operators V(x) defined in eq. (3.3) for different coefficient
functions a,(x) are no longer equivalent on the physical Hilbert space. We demand
that the order field be a covariant scalar field, local with respect to the gauge-
invariant operators E(x) and J,(x). Since @ is linear in A(x) the order field in



A. Korner et al. / Photon as a Goldstone boson 339

hamiltonian gauge should be exponential in E,(x),

V(x)=K[¢,A,-]expigfd2ya,-(x—y)E,-(y), (3.17)

where ¢;;9,a,(x) = 8?(x). The dependence of K on ¢ and A, can be restricted
using locality of V(x) (see ref. [25] for details). We will restrict ourselves to the
form

V(x) =Cexpig [ d*y[a(x—y)E(y) +eb(x—y)Jy(y)].  (3.18)

with b(x —y) a c-number function to be determined, and C a constant as before
(in fact, the same constant).

The locality of V(x), in particular requires a zero commutator with J,(x) at
space-like separations. Using eq. (3.18) one obtains

[J:(x),V(y)] = 2i{ —ega,(x —y) + 3} [egb(x — )] moa 2} D*(X)S(X)V(y) .
(3.19)

There is no continuous function b(x) for which the right-hand side of eq. (3.19)
vanishes. There are, however discontinuous functions of this kind,

b(x) =fc( adl,, (3.20)

where the contour C(x) starts at the origin and ends at the point x. The function
b(x) has a branch cut which starts at the origin and depends on the choice of the
contour C(x). The simplest choice is

1 x; 1
a,'(X)=Z€,-J-F, b(X)":E@(X), (3'21)

where @(x) is an angle betw cen the vector x; and the X-axis, 0 <O <27. In this
case the discontinuity lies aiong the positive direction of the X-axis. In order that

the discontinuity of b(x) does not spoil the locality, the eigenvalue g must be
quantized in units of 27 /e,

g=2mn/e. (3.22)
The operator V,(x) defined by eq. (3.18) with this g will be called the vortex

operator [26]. It creates the flux 2771 /e localized at a point x. If the field V,(x) is
a scalar field its Green functions should not depend on the choice of the
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discontinuity line. We will show in subsect. 3.3 that this is indeed the case, at least
in weak coupling perturbation theory.

Note that using the Coulomb constraint (3.16), we can rewrite the order field
V.(x) in terms of the operator E; only,

2h
V(x)= Cexp{i

Jalx=y E ey}, (3.3)

e

where
a(x)=0,  ayx)=0(x)8(x,). (3.24)

This form will be useful when we represent correlators of V,(x) in the path
integral formalism.

3.3. SCALAR QED:; COULOMB PHASE

We now calculate the expectation value of the order field V,(x) in the frame-
work of weak coupling perturbation theory. The definition of V,(x), eq. (3.23),
contains a nonperturbative factor 1/e in the exponent. The logarithm of {V, (x))
is, however, expandable in e2, although the series starts with the 1/e* term. We
will show that the expansion of In{¥,(x)) in powers of e? coincides with the loop
expansion (or #-expansion) of the ground-state energy of QED in an external
field - the field of a magnetic monopole with the solenoid energy subtracted.

For this purpose it is convenient to use the euclidean path integral formulation.
The expectation value of the order field (3.23) is

2
(V) =C[rdr¢*7a exp{—S(¢,¢*,A) -2 A,

e

1({2mn\>
w3 (=) iz @2s)

where § is the euclidean version of the action (2.1) and
jo=0,  ji=8(1)d,(x) = 8'(£)8(x,)8(x;)8,, (3.26a)
or in momentum space,
Jo=h =0, J2=po/Py> (3.26b)

and G;;""™(p) is given in eq. (3.15). The origin of the third term in the exponent is
the same as in free theory (see subsect. 3.1). One can visualize J,, (in the euclidean
formulation) as a stationary three-dimensional current producing the magnetic
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field of a monopole with magnetic charge 271 /e. In the lowest order it produces
the “external” potential (in hamiltonian gauge)

“4(p) =G, (P)ip),

P> ) 1 4
7y=0, Y= 2 Hy=———+ 3 - (3.27)
Pyp PyPy PyP”
Thc corresponding three-dimensional magnetic field is
2 — oM o stri
Ay =B+ 7", (3.28)
where .M is the field of a monopole,
D
A =i (3:29)
p
while .ﬁ’;"i“g describes the string supplying the flux to the monopole,
’ﬂ(z;lring — ‘ﬂ‘;lring — O, _ﬂlslring - L , (3‘303)
2 P
or, in configuration space,
ATine = gstring — () A = g(x,)8(x,)8(x;). (3.30b)

The appearance of the monopole is universal for any choice of the function b(x)
in eq. (3.20) consistent with locality requirements for the order field. The location
of the solenoid coincides with the branch cut of the function b(x). At first sight the
appearance of the string breaks Lorentz covariance of the field V,(x). The third
term in the exponent of eq. (3.25), as we shall see, completely cancels all the
effects of the string (as in the free case), restoring Lorentz covariance.

It is straightforward now to develop a diagrammatic expansion for the weak
coupling perturbation theory of expression (3.25). Without the term j, G,
(which is independent of A4 ) One recognizes in expression (3.25) the generating
functional Z of scalar QED in the presence of the external source j,. The
logarithm of Z is the vacuum energy W, which is diagrammatically given by the
sum of all connected vacuum diagrams. The current J, appears in the one-point
vertex denoted by “x”. The only contributions in leading order to W are those of

free theory (fig. 3). The energy W is given by the classical energy of electromag-

e~

Fig. 3. The diagram contributing to the order parameter in the Coulomb phase to leading order in e.
“x" denotes an external current j,. €q. (3.26), creating a monopole.
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netism in the presence of the external current creating a magnetic monopole, plus

the G;;"™ contribution,

W= fﬁz (an) ff j,Grewm; )
(Tl )

- _%f(%M)z_ (3.31a)

The second term is the . #*""&squared term, which cancels against the third term

(j,G™j,), as promised, so that the sum is just the magnetic energy of the
monopole .4," without the string,

1(2m7n\>, dp 1
W= —— — . .
2( - )f(h)3 p (3.31b)

We recover the divergent expression of the free theory, see egs. (3.6) and (3.9). At
the next order in e? (i.e. order one) one encounters one-loop diagrams (see fig. 4).

Other diagrams are of higher order in scalar-scalar couplings. The sum of
diagrams in fig. 4 is the vacuum electromagnetic energy of the charged bosonic

yelet

Fig. 4. Next-to-leading order contributions to order parameter in the Coulomb phase.
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field in the presence of the external electromagnetic field #,, and hence is just the
standard gaussian result

) 2 ; 2
d —ie7 ) +m? d —ies7 ) +m?
9, ~ies,) - inder| e = 5%)

W="Trin
i)ﬁ+m2 8ﬁ+m2

(3.32)

The calculation of W therefore reduces to the solution of a nonrelativistic
quantum mechanical problem - a charged particle in the field of a magnetic
monopole [27].

The quantization of the magnetic flux g now appears in the guise of the Dirac
quantization condition [28]. For nonquantized g the expression (3.32) is divergent
due to the singular vector potential along the string. Moreover, as we will see
shortly, the correlator {V,(x)V,*(y)) would in this case be dependent on the
location of the string, thus rendering V,(x) not a Lorentz scalar.

Since, in our case (g = 2wn/e) the monopole satisfies the Dirac quantization
condition, it is clear that any physical quantity is independent of the string. The
solution of the quantum mechanical problem is well known [27]. The determinant
of the Schrodinger operator (3.32) is both ultraviolet and infrared finite. Note that
there is no additional ultraviolet renormalization of the composite operator V,(x)
in this order and the constant C can be chosen the same as in the free theory. We
expect this to hold to all orders at least when the scalar potential V(¢*¢) does not
contain a (¢*¢)* term, in analogy to 3 + 1 dimensions [25].

The appearance of the monopole configuration in this calculation is, in fact,
natural. The vev of an order field #(x) generally is closely related to the tunneling
amplitude between eigenstates of the (broken) charge with different eigenvalues.
Consider the charge Q with integer eigenvalues, and an order field #(x),

[#(x),Q] = (x). (3-33)

Let us choose in the Hilbert space the basis |n(x)) (for the sake of notational
simplicity we work with discrete x), where

e(x)ln(y)) = In(y) +6,.,7, (3.34)

1
nl/Z(x)

Qln(y))=qln(y)>, aq=Y.n(y). (3.35)

Here the charge g is quantized and n(x) is an integer valued function. The
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vacuum of the broken phase is a superposition of states with different charges g,

lvac) = Y, ¥[n(x)]ln(x)>. (3.36)

{n(x)}

The vev of 7~ (x) is

(F(x))= X ¥ [n(N]¥[n(y) +8, |n""*(y). (3.37)

{n(»i

One recognizes in eq. (3.37) the tunneling amplitude over an infinite time
between the states that differ by one unit of the charge,

lim (n(y)le ™ n(y) +3, > = ¥ {n{y)]¥[n{y) + Sy (3.38)
1=
Therefore the ordcr parameter is given by the sum of these tunneling amplitudes*.
The monopoles appearing in eq. (3.29) represent semiclassically the tunneling
processes between states with difterent flux.

The correlator of the order field is also easily calculated in the first two
orders of perturbation theory. Quite generally, the correlator is given by the
same expression as the vev in eq. (3.25) with j (x) replaced by j(x)—j.(y).
The leading order coincides with free theory of eq. (3.10), for which W(x —y) =
(27n/e)*G(x —y) [G is defined in eq. (3.11)] is the energy of the monopole-anti-
monopole pair without a string between them.

In the next-to-leading order one has to calculate the determinant of the
Schrodinger operator of a particle in the field of a monopole—antimonopole pair.
As a result, at large separations, only the coefficient of 1/|x —y| in the exponent
is modified. Note that for the values of g in eq. (3.22) the correlator is indepen-
dent of the shape of the string, and depends only on (x — y)? The same is true for
any other Green function V(x). Therefore the operator V(x) is a covariant scalar
field.

To conclude, to this order in perturbation theory, the order parameter is
nonzero and the correlator of the order field approaches a finite value at large
separations. This means that the flux symmetry is NG broken.

The validity of this result should not be taken for granted — higher orders or

nonperturbative effects may be important. We shall discuss this in more detail in
subsect. 3.6.

3.4. HIGGS PHASE

In the Higgs phase there are no broken symmetries, and therefore no massless
particles. We expect that at the phase transition point the flux symmetry is

* If the order field has an eigenvalue m, this calculation will involve tunneling amplitudes between
states with Adg =m.
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restored. To see this explicitly, let us calculate the order parameter (V,(x)) in the
same approximation we used in the Coulomb phase.
In the path integral formalism,

2
(V(x)) = Cf.%b Z¢*7A exp{ -S(d,0*, A) — ﬂfjnA#
e

2an\? .

Gl’elllf'l v} . (3-39)

To derive the e2-expansion of W, let us rescale the fields and couplings of the
theory, A4, = (1/e)A,, A > €A, and ¢ — (1/e)p, where A is the quartic cou-
pling*. Then we can establish the factor 1/e? in front of the lagrangian,

(V(x))=C [gqb Zd* 7 A exp{ - %[S(qb, é*, A) —27n f A,

+2m2n jf j G ]} (3.40)

Consequently the small-e expansion of W is equivalent to the #-(or loop) expan-
sion of the ground-state energy of the Higgs model.

In leading order W is just the sum of all tree vacuum diagrams, and is equal to
the classical energy in the presence of external sources, corrected by the constant
term ~ [[j,Gi5"™j, (which precisely subtracts the contribution of the string of the
monopole).

Since in the Higgs phase the photon has nonzero mass p the classical action of
the three-dimensional monopole in the superconducting medium is linearly diver-
gent in the infrared [11]. As a result, the order parameter vanishes.

Note that the ultraviolet divergences are the same as in the Coulomb phase, and
therefore no additional renormalization is required.

The correlator of the order field is given in terms of the classical energy of a
monopole-antimonopole pair in the superconductor. At large separation the
magnetic flux is concentrated in a flux tube of thickness of order pn~ ! =er, where
v is the classical expectation value of the scalar field (see fig. 5a). The euclidean
action of this configuration is proportional to the distance R between the monopole
and antimonopole.

W=M,R. (3.41)

* We concentrate on a theory without (¢*$)? interaction term throughout this subsection.
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Fig. 3. (a) Flux tube produced by monopole—antimonopole pair in the Higgs vacuum. (b) Space-time
diagram of a two-dimensional magnetic vortex.

It follows that the correlator of the order field at large separations behaves as
(VH(x)V,(y)) ~ e Mlx, (3.42)

The operator V,(x) (V,*(x)) interpolates a physical particle of mass M, and flux
2wn/e (—2wn/e) — the vortex (antivortex). The mass M, is just the classical
energy per unit length of a Nielsen—Olesen vortex line [9]. This is seen as follows.
Let us consider the solution of the classical field equations of the (2 + 1)-
dimensional Higgs model with the following boundary conditions: the vortex of
strength 27n /e is located at the origin between times — 7 /2 and T /2 (see fig. 5b).
On one hand it represents the vortex at rest which propagates in time and for
T — = the classical action is § = M, T. On the other hand, the same solution of the
euclidean theory gives the energy of the NO vortex line in the (3 + 1)-dimensional
Higgs model. Therefore the mass of the vortex is given by [11]

e
M,=7r’In e (3.43)

where A is the quartic self-coupling of the scalar field.
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Fig. 6. Typical diagram contributing to the order parameter in spinor QED.

3.5. ORDER PARAMETER IN SPINOR QED

We turn now to the calculation of the order parameter in spinor QED. The
symmetry breaking pattern is different: U, (1) ® Uy(1) — U,(1). We should choose
an operator which commutes with tl_1e unbroken generator /, and is an eigenoper-
ator of a broken generator (J; or F,)*. The simplest choice is

“(x) = (X)) (x), (344

where V,(x) is the vortex operator defined in eq. (3.23) with n =2, and the index
on  refers to flavour. Its vev is given by a path integral,

- — _ 47
(F(x)) = Cff/.ng/A U, exp{ -S(y,9,A) — ;];‘FA#

2
+2(2—;) If juG,[f,‘“'“',,}. (3.45)

Just as in the calculation of the vev of the vortex operator in subsect. 3.4, this can
be interpreted diagrammatically. The typical diagram is shown in fig. 6. Since the
electromagnetic interaction does not change flavour, any diagram of this type
vanishes. Therefore, to all orders in perturbation theory the order parameter
vanishes, and according to the definition in appendix A the symmetry breaking is
of Kosterlitz—Thouless type.

3.6. VALIDITY OF PERTURBATION THEORY

Up to now, in calculating the order parameter, we have relied on weak coupling
perturbation theory, to next-to-leading order. The validity of the approximation,
however, can be questioned.

First, the real spectrum of the theory is qualitatively different from the perturba-
tive one. The charged fermions (and also bosons in scalar QED) are logarithmi-
cally confined. Therefore, one expects important nonperturbative effects.

* If the operator carries nonzero quantum numbers of an unbroken symmetry its vev will trivially
vanish.
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As was shown recently by Sen [29], confinement of elementary charges does
show up in order €2, as an on-shell infrared divergence in the electron’s propaga-
tor. However, other relevant effects, like the appearance of bound states, are not
seen in perturbation theory.

Our calculations in both scalar and spinor QED are, up to now, at zeroth order
in coupling ("), and do not incorporate the effects of confinement. The fact that
corrections to the calculation we performed are indeed important can be seen
from the following consideration. Let us consider the vev of the vortex operator
V(x), eq. (3.23), in spinor QED. This is not a good order parameter for the
symmetry breakdown pattern U,(1) ® U (1) — U,(1), since V|(x) is an eigenopera-
tor of the unbroken charge,

[Vi(x). I] =Vi(x). (3.46)

Since I is not broken, the expectation value of V|(x) must vanish in the vacuum.
However, performing the calculation to order one, we obtain

det|d —m —. 4|
det|d — m|

(Vi(x)) = (3.47)

which is manifestly finite. We conclude therefore, that other contributions are
important and should eventually lead to the vanishing of {(V(x)).

This calculation is very similar to the one we performed in the Coulomb phase
of scalar QED, subsect. 3.3. Therefore, one might expect that in that theory also
higher-order and/or nonperturbative effects may lead to the vanishing of the
order parameter, changing the realization of flux symmetry from NG to KT. We
will address this question in a future publication. The interesting question of
whether the symmetry breaking in both scalar and spinor QED is of NG- or

KT-type beyond perturbation theory must be settled by nonperturbative methods,
such as lattice simulation.

4. Discussion and conclusion

We studied realization of the flux and chiral symmetries in various (2 + 1)-
dimensional abelian gauge theories. All these models have two phases. In the
Coulomb phase the photon is massless. We show that the masslessness of the
photon is a result of the spontaneous symmetry breaking of the flux symmetry. In
the second phase the flux symmetry is unbroken and as a result the photon is
massive. In scalar QED this is the Higgs phase. In spinor theories (QED and
Chern-Simons electrodynamics) this is the phase where the photon acquires a
topological mass. The vacuum in this phase is annihilated by the flux @ which
provides a natural interpretation of the superconducting state (the Meissner
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effect). There is a finite gap for flux carrying excitations (vortices) and as a result,
small external magnetic fields are expelled.

We determined the symmetry breaking pattern and found a corresponding order
parameter: the vortex operator. In the massive phases this order parameter
vanishes, whereas in the Coulomb phase the situation is more delicate. If (£ ) #0
it is another example of the familiar NG phenomenon, while if (<) =0 the flux
symmetry is KT broken. We performed a perturbative calculation of the order
parameter. At next-to-leading order in e? in scalar QED, {~ ) # 0, while in spinor
QED {#) = 0. This calculation is essentially equivalent to evaluating the partition
function of QED in the presence of an external current creating a magnetic
monopole (without the Dirac string). In this representation the mode of flux
symmetry realization is determined by the long-distance asymptotics of the interac-
tion between monopoles. If the renormalized interaction decays faster than In r we
get a NG mode, whereas for a slower decay KT mode is realized. In order to settle
this question one should go beyond perturbation theory, for example to lattice
simulation.

One should be aware, however, that the correct model on the lattice is noncom-
pact QED. It is well known that in compact QED the flux current is not conserved.
Instantons break the flux symmetry, and as a result the photon has a finite mass
[30]. The continuum !imit of compact QED is not the continuum theory we
considered. Noncompact QED in 2 + 1 dimensions unfortunately has not been
thoroughly studied on the lattice but there are strong indications that it contains a
massless photon and provides a proper regularization of continuum QED [31].

Let us now discuss the possible consequences of our general approach to other
gauge theories. The first natural class of theories are nonabelian gauge theories in
2 + 1 dimensions.

In pure Yang-Mills theory with a semi-simple gauge group G there is no direct
generalization of the conserved (gauge invariant) current analogous to 15”. The
natural candidates F:f are only covariantly conserved, D,‘[”l‘:,f’ = (. Therefore one
should not expect to find massless gluons, in agreement with general belief and
lattice simulations. In more complicated cases one perturbatively encounters mass-
less gauge bosons. This happens when the gauge group G is broken down to H,
which contains an invariant abelian subgroup.

In this case one can define a quantity F:L, which is conserved within perturbation
theory [32]. However one still cannot define a current which is conserved nonper-
turbatively. Semiclassically, this is apparent since instantons which break this
“conservation law” explicitly have finite action. Indeed, generally, gauge bosons
nonperturbatively acquire mass. One can expect that they can remain massless
beyond perturbation theory only when a theory possesses an additional global
symmetry which is spontaneously broken. We can find support for this point of
view from the following examples taken from ref. [33]. Affleck et al. [33] consid-
ered an SO(3) gauge theory in 2 + 1 dimensions, with gauge symmetry breaking



350 A. Kovner et al. / Photon as a Goldstone boson

pattern SO(3) — U(1),
F=—3F2+ X(D,d) + V() + - (iD+gd X)i, (4.1)

where ¢® and ¢° transform as adjoint representations of the gauge group. The
system has a global U(1) symmetry, ¢ — e, § > e~ .

Affleck et al. [33] showed that this symmetry transformation connects the
vacuum to a one-photon state. The symmetry remains broken nonperturbatively
and the photon remains massless even when the non-perturbative instanton
contributions are taken into account.

Some constrained systems are conveniently represented as abelian gauge theo-
ries. For example, the CPV~! model can be represented in the gauge-invariant
form [34]

N , ,
L= ?-I.'?nl“+a(lfn—1), (4.2)

where the covariant derivative Dﬂ =d, —iAﬂ, with A# an auxiliary field A# =
%i(n*é‘un - 6#31* n). On the classical level the theory possesses a conserved topolog-
ical current F, [35]. To all orders in the 1/N-expansion in the disordered phase
(strong coupling) this symmetry is spontaneously broken [34]. As a result there
appears a composite massless mode, “the photon”. However, this theory resembles
[36] compact QED; rather than the noncompact one. The hedgehog instanton’s
action in the continuum is finite [37] and recent lattice calculations [38] indicate a
finite instanton density and an anomalous flux symmetry breaking in the disor-
dered phase. The “photon” therefore becomes massive due to nonperturbative
effects (in 1/N).

In this paper we considered only the simple (2 + 1)-dimensional case. It would
be more interesting to consider the realistic (3 + 1)-gauge theories with massless
gauge bosons from this point of view. The natural generalization of the (2 + 1)-
dimensional flux symmetry current F; is the dual field strength tensor 1':‘“,. It
satisfies the conservation law d,F,,, =0 and creates a photon from the vacuum.
The corresponding charge @, = [F,,, d*x is no longer a Lorentz scalar. ®,=0
identically, while, of the three components of the magnetic flux @, only two are
independent. Breakdown of these two symmetries leads to the appearance of two
massless photons. The photons are, however, not (Lorentz) scalars, due to the
nontrivial commutators between the Lorentz group and the flux symmetry genera-
tors. It is interesting to further study these questions.

We are indebted to I. Affleck, E. Dagotto, B. Marston and N. Weiss for
interesting discussions. This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. One of us (B.R.) acknowl-
edges all the support of NSF grant PHY 82-17853.
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Appendix A

MODES OF REALIZATION OF CONTINUOUS SYMMETRY

In this appendix we review the different modes in which a continuous symmetry
may exhibit itself in quantum field theory. Let J, be a conserved current, d,J, =0,
and Q = [J, a corresponding global charge. As is well known, in quantum field
theory the physical spectrum does not always form multiplets under the action
of Q.

The first important feature distinguishing between different modes of realization
of the symmetry is the transformation properties of the vacuum under the action of
Q. If Q|0) =0, the symmetry is said to be broken, while when Q[0) # 0, the
vacuum is degenerate and the symmetry is spontaneously broken. A hallmark of
theories possessing a broken symmetry is an appearance of zero-mass excitations.

tion. In the unbroken case one can distinguish between Wigner—Weyl (WW) mode,
in which finite-energy excitations form multiplets carrying nonzero charge Q, and a
neutral mode in which all finite-energy excitations are zero-charge singicts. Exami-
ples of WW mode are plentiful. Triality in QCD and electric charge U/1)
symmetry in the Higgs phase of QED are examples of neutral mode.

Among the broken symmetries, along with the familiar Nambu-Goldstone (NG)
mode there exists a distinct mode of symmetry realization which we will call the
Kosterlitz—Thouless (KT) mode. This is common in 1+ 1 dimensions: the O(2)
symmetry in the low-temperature phase of the XY model [2] or chiral symmetry in
various fermionic theories [3].

One distinguishes between NG- and KT-modes by the value of an order
parameter pertinent to the symmetry. In order to make the distinction precise we
define an order parameter ', as the vev of an eigenoperator # of Q,

v, = (0|7 (x)l0), [<,0]1=¢7. (A.1)

When ¢, #0 the symmetry is realized in NG mode. However, spontaneous
breaking of a symmetry does not necessarily imply the nonvanishing of an order
parameter. If ¢, =0 for any eigenoperator O, we will call this the KT realization
of symmetry*.

It is important to stress that the Goldstone theorem remains valid even in KT
mode. The only assumption which is used in the general proof (see for example
ref. [16]) is that there exists an operator y such that <0l[x,Q1i0) #0. The
existence of such an operator is guaranteed by the fact that 010> # 0. Conse-
quently in the KT mode (as in NG) the existence of a massless excitation, for
example, the spin wave in the XY model, is required by the Goldstone theorem.

* This definition is implicit in Witten's paper [3].
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Alternatively one can distinguish between NG- and KT-modes by the behaviour
of the correlator of the order field. It is convenient to use an eigenoperator which
is a local field,

[Jo(x), #(9)] = 2(x)8(x ~y). (A2)

In the WW mode the order field #(x) interpolates a massive particle. It’s
correlator decays exponentially,

Ole(x)E(p)I0) ~ e, (A3)

at large separations. The mass m is the lowest mass in the relevant channel. If the
symmetry is in neutral mode m is infinite and the correlator vanishes.

The correlator falls slower in the broken symmetry case. For NG mode, since
(#(x)) =v, #0, it approaches a constant,

Ol (x)#(p)I0) > 2 #0. (A4)

In the KT mode the correlator vanishes at infinite distance, but usually slower than
an exponential, due to the existence of a zero mode. In the XY model, the
Gross—Neveu model, and other (1 + 1)-dimensional models, it falls as a power [3],

1
0l (x)m(y)I0) = W (A.5)

lx

The simplest and a rather generic example of the KT mode in 1+ 1 is a free
massless scalar,

r=10,0). (A.6)

The “shift” symmetry ¢ — ¢ + const. is generated by Q = [rdx = [, dx, the
corresponding current being J, =d,¢. The vacuum is degenerate: all coherent
states of the form explia [ dx w(x)]|0), where 7 is the momentum conjugate to ¢,
have equal energy, and the shift symmetry is broken*. Yet for any choice of the
vacuum state, the expectation value of the order field #(x) = expli{#(x)] van-
ishes. The particle ¢ is the corresponding massless mode. A generic order field is
A(x)~ Cexpild(x),

[Jo(x), 4] = ig e®4 5(x ~y). (A7)

* Sometimes it is said that in these theories the symmetry is not broken. The reason is that the scalar
product between different vacua is finite, unlike in higher dimensions where it vanishes exponen-
tially with volume [13]. Therefore one is able to construct an invariant superposition. For finite
volume (infrared cutoff) this state turns out to be a nondegenerate groundstate. However for
infinite volume it becomes degenerate with other states and the symmetry is broken.
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TaBLE 1
Modes of symmetry realization. The table shows the characteristics that distinguish the various
modes of symmetry realization

Wigner-Weyl Neutral Nambu-Goldstone Kosterlitz—Thouless

Degeneracy

of vacuum unbroken Q|0 =0 unbroken Q|0) =0 broken Q|0) #0 broken Q|0) #0
Corresponding

massless excitations none none NG bosons KT bosons
Energy gap

to charged finite infinite no charged no charged

excitations eigenstates eigenstates
vev of order field 0 0 0 0
Correlator of order

field as r - x e~ 0 const. r«

The expectation value of #(x) in any of the vacua can be easily calculated,
(€(x)) =C2e 56O o /4ming® _ 07 /27 (A.8)

where u is an infrared cutoff. In the u — O limit the order parameter vanishes.
Therefore (in two dimensions only) the shift symmetry is realized in KT mode. The
correlator of @(x) is

(01 (x)@()I0) = =G = |y —y| =€ /27 (A9)

Although in all (1 + 1)-dimensional examples of KT realizations the correlator falls
off as a power we are not aware of a general proof that this is always the case.
Therefore as a definition of KT realization we choose the degeneracy of vacuum
accompanied by the vanishing of the order parameter. The characteristic features
of various symmetry realizations are summarized in table 1.
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